Skip to main content

Unlocking the Power of AI: Reshaping Financial Services


AI is a
 hot topic and numerous articles are published stating that financial service companies not adopting AI today risk becoming obsolete tomorrow. However, as with many hypes, the industry’s adoption of AI may not proceed as rapidly as commonly predicted. Just as an example, for the past two decades, experts have been forecasting the obsolescence of banks using old legacy mainframe systems. Yet, even after 20 years, many banks still rely on critical core banking applications built on legacy mainframe technologies, and these banks remain as strong (if not stronger) as they were two decades ago.

That being said, AI is here to stay, and a gradual adoption is essential. As discussed in my blog, "The Right Fit: Assessing Business Value before Adopting AI/ML" (https://bankloch.blogspot.com/2023/10/the-right-fit-assessing-business-value.html), it is crucial for banks to choose their AI battles wisely, rather than implementing AI for the sake of it.

Creating a comprehensive list of AI use cases in the financial services industry is therefore imperative. In my opinion, we can categorize all AI use cases in the financial services industry into two main groups:

Group 1: More efficient handling of unstructured data

This category focuses on collecting, analyzing, and processing data that cannot be neatly structured in an SQL database. It typically includes data from documents, speech, or images, often stemming from third parties like the government or from non-digital customer services that need transformation into a digital format. These use cases primarily aim at cost reduction, as processing unstructured data can be very resource-intensive. The rise of AI is making it increasingly feasible to automate these processes.

Examples include:

  • KYC and KYB document handling: Processing identity card images, government publications, or company statutes to gain a better understanding of customers and company structures.

  • Identity management: Similar to KYC/KYB but focused on continuous authentication and transaction signing, using unstructured data like ID card images, biometric identification (like face and fingerprint) and behavioral identification.

  • Brand & Reputation management: Monitoring customer and media sentiment about the company to react to marketing campaigns and address negative publicity. This is done by monitoring traditional media and social media (like feedback comments, likes, shares, opinions..) and other information sources (e.g. call center records) to identify the customer sentiment and trends.

  • Claim Management: Automating the processing of claims with unstructured data, such as pictures of damaged insured objects and insurance expert reports.

  • Chatbots and automated call centers: Utilizing AI to categorize and tag customer interactions, dispatch interactions efficiently, propose standard response templates, and even fully automate responses across various communication channels (mail, phone call and chat box).

  • Sentiment analysis on emails, chat sessions, voice and video recordings, and unstructured summaries of communication to understand customer feedback and employee-customer interactions.

  • Expense and Invoice Management: Converting financial documents into structured data for automatic processing (e.g. correctly booking it in the right accounting category).

Group 2: Better prediction and resource allocation

In the financial services industry (just like in any other industry), resources like people and money are scarce and should be allocated as efficient as possible. AI can play a crucial role in predicting where these resources are most needed and where they can yield the highest added value.+

The attention of a customer can also be considered as a scarce resource, meaning any communication or offer should be highly personalized to ensure that the limited attention span of the customer is optimally used.

These use cases can be categorized into two sub-categories:

Sector-agnostic use cases

  • Segmentation of customers based on available data (e.g. customer profiling, analyzing transaction patterns, past and immediate customer behavior…​) for determining the best possible means (best channel mix) and style of communication (contact optimization) and allocating resources to the customers with the highest potential future revenue.

  • Churn detection to identify and retain customers at risk of leaving. By allocating extra resources to those customers, such as employees contacting the customer or offering certain incentives (e.g. discounts or better interest rates) to prevent the customer from churning.

  • Identify best prospects and sales opportunities: out of a list of leads identify those who are most likely to become a customer, but also identify which existing customers can best be targeted for cross-selling and up-selling actions.

  • Predict evolutions in demand and supply, e.g. identify where ATM machines or branches should best be located, predict how many customer support interactions can be expected to ensure optimal staffing of the customer support team or predict the load on the IT infrastructure to optimize cloud infrastructure costs.

  • Next best action, Next best offer or Recommendation engine for personalized customer interactions, i.e. predict which action, product or service is most likely to interest a user at any given moment in time. Allowing easy access to this process can help the customer or any other user (like internal employees) to achieve their goal faster, thus resulting in increased revenues and reduced costs.

  • Pricing engine for determining the optimal product or service pricing.

Financial service industry specific use cases

  • Credit Scoring Engine to assess creditworthiness and make efficient lending decisions. This engine aims to predict the probability of default and the estimated loss value in case of default, to determine whether a credit should be accepted or not. This is also a prediction problem, which ensures that the money of the bank is spent in the most efficient way possible.

  • Fraud Detection Engine to identify and prevent fraudulent financial transactions, including online fraud (cyber threats) and payment fraud. The engine predicts if the actual behavior of a user matches with the expected (predicted) behavior. If not, it is likely a case of fraud. These engines help to reduce revenue losses, avoid brand damage, and provide a frictionless customer online experience.

  • Robo-Advisory services to create optimal investment portfolios based on market trends, the current investment portfolio and customer constraints (like risk profile, sustainability constraints, investment horizon…​).

    • AML Detection Engine to detect (and stop) money laundering and criminal activity in financial transactions.

    • Liquidity Risk Management Engine for optimizing cash flows. This is a service that can be offered to customers, but which is also required internally for the bank. The bank needs to ensure sufficient liquidity on its balance sheet to cover all withdrawals, but also to predict the physical cash needs to supply ATM machines and branches.

In addition to these business-oriented AI use cases, do not overlook the internal use of AI to enhance employee productivity. Generative AI tools like ChatGPT can assist various departments, such as sales, marketing, and IT, in boosting their productivity.

As indicated in my blog "The Right Fit: Assessing Business Value before Adopting AI/ML" (https://bankloch.blogspot.com/2023/10/the-right-fit-assessing-business-value.html), the first category (i.e. "More efficient handling of unstructured data") holds in my opinion the biggest potential, though it requires very specific AI skills and complex AI models. Therefore, many financial services companies are likely to use pre-trained models for this category of use cases.

The use cases in the second category (i.e. "Better prediction and better allocation of scarce resources") are also promising and can yield more quickly results than the use cases of category 1. However, their added value compared to traditional rule-based algorithms is not always guaranteed, they often lack transparency and are difficult to fine-tune. As a result, AI those use cases often look more promising than they actually are.

In many cases, banks will not need to invest directly in AI, as numerous software solutions already exist, offering not only AI models but also encompassing the workflow and business logic around them.
For each use case, financial service companies can actually choose between three options:

  • Option 1: Building a model from scratch using platforms like AWS SageMaker or GCP AI Platform. This means the company needs to identify a good data training set, set up a model and train the model itself. E.g. KBC has built a big part of its virtual assistant (called Kate) fully in-house using GCP AI technologies.

  • Option 2: Using pre-trained cloud-based models that are easily deployable and adaptable, such as AWS Fraud Detector, AWS Personalize, or custom versions of ChatGPT (cfr. announcement of OpenAI to introduce new concept of GPTs) for specific use cases.

  • Option 3: Acquiring full software solutions that include internal AI models, screens, workflows, and processes. Numerous solutions exist in the Financial Services industry, such as Discai (which commercializes the AI models built internally by KBC bank), ComplyAdvantage, Zest AI, Scienaptic AI, DataRobot, Kensho Technologies, Tegus, Canoe, Abe.ai…​

The decision on which option to choose depends on the financial service company’s specific needs. Understanding the capabilities and limitations of AI models, having a solid data strategy, and knowing how to make data available for external models and tools are crucial steps for a financial services company looking to adopt AI. These steps are usually more important than having deep internal AI knowledge.

Adopting AI in the financial services industry is clearly a necessity for staying competitive and meeting customer demands. The right approach (of build versus buy), combined with well-considered use cases, can pave the way for a successful AI journey.

Comments

Popular posts from this blog

Transforming the insurance sector to an Open API Ecosystem

1. Introduction "Open" has recently become a new buzzword in the financial services industry, i.e.   open data, open APIs, Open Banking, Open Insurance …​, but what does this new buzzword really mean? "Open" refers to the capability of companies to expose their services to the outside world, so that   external partners or even competitors   can use these services to bring added value to their customers. This trend is made possible by the technological evolution of   open APIs (Application Programming Interfaces), which are the   digital ports making this communication possible. Together companies, interconnected through open APIs, form a true   API ecosystem , offering best-of-breed customer experience, by combining the digital services offered by multiple companies. In the   technology sector   this evolution has been ongoing for multiple years (think about the travelling sector, allowing you to book any hotel online). An excelle...

Are product silos in a bank inevitable?

Silo thinking   is often frowned upon in the industry. It is often a synonym for bureaucratic processes and politics and in almost every article describing the threats of new innovative Fintech players on the banking industry, the strong bank product silos are put forward as one of the main blockages why incumbent banks are not able to (quickly) react to the changing customer expectations. Customers want solutions to their problems   and do not want to be bothered about the internal organisation of their bank. Most banks are however organized by product domain (daily banking, investments and lending) and by customer segmentation (retail banking, private banking, SMEs and corporates). This division is reflected both at business and IT side and almost automatically leads to the creation of silos. It is however difficult to reorganize a bank without creating new silos or introducing other types of issues and inefficiencies. An organization is never ideal and needs to take a numbe...

RPA - The miracle solution for incumbent banks to bridge the automation gap with neo-banks?

Hypes and marketing buzz words are strongly present in the IT landscape. Often these are existing concepts, which have evolved technologically and are then renamed to a new term, as if it were a brand new technology or concept. If you want to understand and assess these new trends, it is important to   reduce the concepts to their essence and compare them with existing technologies , e.g. Integration (middleware) software   ensures that 2 separate applications or components can be integrated in an easy way. Of course, there is a huge evolution in the protocols, volumes of exchanged data, scalability, performance…​, but in essence the problem remains the same. Nonetheless, there have been multiple terms for integration software such as ETL, ESB, EAI, SOA, Service Mesh…​ Data storage software   ensures that data is stored in such a way that data is not lost and that there is some kind guaranteed consistency, maximum availability and scalability, easy retrieval...

IoT - Revolution or Evolution in the Financial Services Industry

1. The IoT hype We have all heard about the   "Internet of Things" (IoT)   as this revolutionary new technology, which will radically change our lives. But is it really such a revolution and will it really have an impact on the Financial Services Industry? To refresh our memory, the Internet of Things (IoT) refers to any   object , which is able to   collect data and communicate and share this information (like condition, geolocation…​)   over the internet . This communication will often occur between 2 objects (i.e. not involving any human), which is often referred to as Machine-to-Machine (M2M) communication. Well known examples are home thermostats, home security systems, fitness and health monitors, wearables…​ This all seems futuristic, but   smartphones, tablets and smartwatches   can also be considered as IoT devices. More importantly, beside these futuristic visions of IoT, the smartphone will most likely continue to be the cent...

PSD3: The Next Phase in Europe’s Payment Services Regulation

With the successful rollout of PSD2, the European Union (EU) continues to advance innovation in the payments domain through the anticipated introduction of the   Payment Services Directive 3 (PSD3) . On June 28, 2023, the European Commission published a draft proposal for PSD3 and the   Payment Services Regulation (PSR) . The finalized versions of this directive and associated regulation are expected to be available by late 2024, although some predictions suggest a more likely timeline of Q2 or Q3 2025. Given that member states are typically granted an 18-month transition period, PSD3 is expected to come into effect sometime in 2026. Notably, the Commission has introduced a regulation (PSR) alongside the PSD3 directive, ensuring more harmonization across member states as regulations are immediately effective and do not require national implementation, unlike directives. PSD3 shares the same objectives as PSD2, i.e.   increasing competition in the payments landscape and en...

Trade-offs Are Inevitable in Software Delivery - Remember the CAP Theorem

In the world of financial services, the integrity of data systems is fundamentally reliant on   non-functional requirements (NFRs)   such as reliability and security. Despite their importance, NFRs often receive secondary consideration during project scoping, typically being reduced to a generic checklist aimed more at compliance than at genuine functionality. Regrettably, these initial NFRs are seldom met after delivery, which does not usually prevent deployment to production due to the vague and unrealistic nature of the original specifications. This common scenario results in significant end-user frustration as the system does not perform as expected, often being less stable or slower than anticipated. This situation underscores the need for   better education on how to articulate and define NFRs , i.e. demanding only what is truly necessary and feasible within the given budget. Early and transparent discussions can lead to system architecture being tailored more close...

Low- and No-code platforms - Will IT developers soon be out of a job?

“ The future of coding is no coding at all ” - Chris Wanstrath (CEO at GitHub). Mid May I posted a blog on RPA (Robotic Process Automation -   https://bankloch.blogspot.com/2020/05/rpa-miracle-solution-for-incumbent.html ) on how this technology, promises the world to companies. A very similar story is found with low- and no-code platforms, which also promise that business people, with limited to no knowledge of IT, can create complex business applications. These   platforms originate , just as RPA tools,   from the growing demand for IT developments , while IT cannot keep up with the available capacity. As a result, an enormous gap between IT teams and business demands is created, which is often filled by shadow-IT departments, which extend the IT workforce and create business tools in Excel, Access, WordPress…​ Unfortunately these tools built in shadow-IT departments arrive very soon at their limits, as they don’t support the required non-functional requirements (like h...

An overview of 1-year blogging

Last week I published my   60th post   on my blog called   Bankloch   (a reference to "Banking" and my family name). The past year, I have published a blog on a weekly basis, providing my humble personal vision on the topics of Fintech, IT software delivery and mobility. This blogging has mainly been a   personal enrichment , as it forced me to dive deep into a number of different topics, not only in researching for content, but also in trying to identify trends, innovations and patterns into these topics. Furthermore it allowed me to have several very interesting conversations and discussions with passionate colleagues in the financial industry and to get more insights into the wonderful world of blogging and more general of digital marketing, exploring subjects and tools like: Search Engine Optimization (SEO) LinkedIn post optimization Google Search Console Google AdWorks Google Blogger Thinker360 Finextra …​ Clearly it is   not easy to get the necessary ...

The UPI Phenomenon: From Zero to 10 Billion

If there is one Indian innovation that has grabbed   global headlines , it is undoubtedly the instant payment system   UPI (Unified Payments Interface) . In August 2023, monthly UPI transactions exceeded an astounding 10 billion, marking a remarkable milestone for India’s payments ecosystem. No wonder that UPI has not only revolutionized transactions in India but has also gained international recognition for its remarkable growth. Launched in 2016 by the   National Payments Corporation of India (NPCI)   in collaboration with 21 member banks, UPI quickly became popular among consumers and businesses. In just a few years, it achieved   remarkable milestones : By August 2023, UPI recorded an unprecedented   10.58 billion transactions , with an impressive 50% year-on-year growth. This volume represented approximately   190 billion euros . In July 2023, the UPI network connected   473 different banks . UPI is projected to achieve a staggering   1 ...

AI in Financial Services - A buzzword that is here to stay!

In a few of my most recent blogs I tried to   demystify some of the buzzwords   (like blockchain, Low- and No-Code platforms, RPA…​), which are commonly used in the financial services industry. These buzzwords often entail interesting innovations, but contrary to their promise, they are not silver bullets solving any problem. Another such buzzword is   AI   (or also referred to as Machine Learning, Deep Learning, Enforced Learning…​ - the difference between those terms put aside). Again this term is also seriously hyped, creating unrealistic expectations, but contrary to many other buzzwords, this is something I truly believe will have a much larger impact on the financial services industry than many other buzzwords. This opinion is backed by a study of McKinsey and PWC indicating that 72% of company leaders consider that AI will be the most competitive advantage of the future and that this technology will be the most disruptive force in the decades to come. Deep Lea...